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GROUNDWATER IS NATURE’S INSURANCE

PROTECTS
FOOD SECURITY

REDUCES
POVERTY

BOOSTS
RESILIENT GROWTH

GROUNDWATER PROVIDES
of all water withdrawn for 
domestic use globally49%

43% of irrigation water

GW MITIGATES half of losses in 
agricultural yield caused by drought

EASILY ACCESSIBLE AQUIFERS buffer 
economic growth losses by 1/3rd drought

Up to 92% of TBAs in 
ME & S Asia –GW 
depletion. S Asia GW ag 
revenue ↑10 – 20%

GW underused in SSA
> 225 M people: 
poverty could be ↓ed  
by ↑ 𝑖𝑛𝑔 shallow GW.

BUT
GW has been 
undervalued, 
overexploited in 
Some regions 
underexploited
in others
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Too much vs too little?



1. Irrigation, Food Production, and Urban Water
Surface Water Irrigation

Siebert et al., HESS, 2010

Groundwater Irrigation

Cape Town Day Zero

Sao Paulo

4/20

Irrigation: 70% of global water withdrawal
90% of global water consumption



Methods
2. GRACE

Gravity Recovery and Climate Experiment

GRACE: March  2002 – 2017 (low solar activity)
GRACE Follow-On: 2018 →

500 km above land surface controls resolution 
of GRACE data
Resolution: ~350 km, ~120,000 km2

Satellites 220 km apart

Monthly data
1 gigaton mass change = 1 km3 of water

Terrestrial water storage (TWS) change

Essential climate variable in 
Global Climate Observing System

http://grace.jpl.nasa.gov/mission/gravity-101/

http://grace.jpl.nasa.gov/mission/gravity-101/


http://grace.jpl.nasa.gov/mission/gravity-101/


2. GRACE Total Water Storage Anomalies (04/2002 – 09/2021)

Rateb et al., 2022
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3a. Potential to Expand Irrigation in Sub-Saharan Africa
GRACE Total Water Storage Anomaly 

(2002 – 2020)

40% basement 
aquifers
Self-regulating



3b. Switching from Surface Water to Groundwater Irrigation
Total Water Storage Time Series 



3b. A century of groundwater accumulation in Pakistan 
and Northwest India (GW level monitoring)

MacAllister et al., NGC, 2022
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3b. Indo-Gangetic Basin

Government response with aid from World Bank:
National program: Atal Bhujal Yojana, 7 states
switching from GW wells to irrigation canals
Punjab: Save Water, Earn Money scheme 
Incentivizes farmers to reduce groundwater use
Some cities in Punjab moving from GW to canals

https://www.worldbank.org



Solutions:
Salinity Control and 
Reclamation Project (SCARP): 
1.5 million tube wells installed 
waterlogged areas
Conjunctive use of SW and GW
GW depletion: water level 
declines ≤ 1 m/yr in some 
areas.
Recharge Pakistan project: GW 
recharge wells, nature based 
solutions to recharge aquifer, 
wetland restoration

SW irrigation, 1900s
Water logging and 
GW salinization

Freshwater aquifers, Indus Plains and
riverine corridors, ~ 500 km3

Qureshi et al., 2004 Hussain and Abbas, DE, 2019
Azeem Shah, WRP, 2025

3b. Switching from Surface-Water to Groundwater Irrigation in Indus Basin 
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3b. Major 
Aquifers (14)

Unconfined aquifers
High Plains, AZ Alluvial, 
Upper Colorado, Snake
Semi-confined aquifers
Columbia & Central Valley: 
Confined
All other aquifers

Central Valley



3b. Total Water Storage Trends in the U.S. (GRACE: 2002 – 2017)

Rateb et al., WRR, 2021
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3b. Long-term Trends in Groundwater Storage
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3b. Eastern Snake Plain 
Aquifer Recharge

http://idwr.idaho.gov/water-data/projects/espam/

Thousand Springs

Egin Lakes Recharge project

Hikpe et al., GW, 2022
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Managed Aquifer Recharge Projects
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3c. Conjunctive Use of SW and GW
Total Water Storage Variability

R=0.91

R=0.73

R=0.50

R=0.66
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Konikow et al., 2011

GW Storage Change
GRACE (2002 – 2017)

GW Storage Change
Regional Models and Monitoring

Rateb et al., 2020
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Impact of Irrigation on Water Storage

NLCD, 2016; 
USGS, MODIS, 
2002, 2007, 
2012, 2017



San Joaquin/
Tulare

SW Irrigation
GW Irrigation
Other uses

Water Use
km3/yr
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3c. Irrigation Water Use

Mississippi 
Embayment

Scanlon et al., ERL, 20212010: wet year: 70% SW
2015: drought: 70% GW 

Conjunctive use 
of SW and GW
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3d. Managed Aquifer Recharge: Arizona Alluvial Valley

USF: Underground Storage Facilities: 7.0 km3 

GW Savings Facilities: 3.5 km3 (Switch GW → SW)
Incidental Recharge: 14.2 km3 (SW irrigation)

1989 - 2019

Central AZ Project (CAP)
Active Manag. Areas (AMAs)

Recharge in Active Management Areas

USF: 
Spreading basins

Arizona: Pump and Replenish 
Pumping GW and replenishing it with MAR is 
1000 × less expensive that developing 
SW treatment plant Scanlon et al., NCEE, 2025
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Rosedale-Rio Bravo 

City of Bakersfield 

Buena VistaWSD 

Pioneer 

Berenda 
Mesa WD 

3d. Managed Aquifer Recharge in California Central Valley



3d. Water Budget in Arvin Edison Irrigation District, Central Valley, California
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3d. Water Budget in Arvin Edison Irrigation District, Central Valley, California
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3d. Increasing Cost and Energy Intensity of Water at Arvin Edison

AEWSD Rept. 2024

Power costs increased from $3/af in 1970 to $81/af in 2022
Power = 40% of cost in 2022



30

GRACE Continuity (GRACE-C)

• Mass Change produces observations 

consistent with the GRACE(FO), documented 

in the baseline Mass Change Designated 

Observable study

•Partnership between NASA & DLR

•Similar design to GRACE (F0)

•Baseline design life: 2 years (7 years 

consumables)

•Orbit: 500 km altitude, 89º Inclination

• Satellite to Satellite Tracking:

• Laser Ranging Interferometer 

• Accelerometer 

•GNSS Receiver 

• Star Camera Attitude determination

Measurement System

Project/Program Constraints

Mission Science

Target Launch: 2028



MAGIC: Mass change And Geosciences 
International Constellation

European Next Generation Gravity Mission 
(NGGM): Target Launch: 2032

Resolution:
400 km elevation, 70° inclination 

Wiese et al., 2022: trade space considering 
spatiotemporal resolution and uncertainty;  
Monthly solution ± 20 mm uncertainty      
↑ resolution of TWSA from 350 km to 200 km 
(120,000 km2 to 40,000 km2)

GOCE satellite: 250 km elevation (2009 – 2013)
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Africa

b. Switching from SW to GW irrigation 
(Pakistan, NW US)

c. Conjunctive use of SW and GW (CA 
Central Valley)

d. Managed Aquifer Recharge: Arizona

4. Urban water shortages (Cape Town, Sao 
Paulo)

16/20



4.0 Cape Town Day Zero (13.5 % reservoir capacity), drought linked to El Nino,
70% increase in population (1995: 2.5 M – 2015: 4.1 M), water storage only ↑ed 17% 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ig

 S
ix

 R
es

er
vo

ir
 S

to
ra

ge
 (

m
af

)

B
ig

 S
ix

 R
es

er
vo

ir
 S

to
ra

ge
 (

km
3
)

Heavily reliant on SW
Reservoir storage ↓ 
90% (2014), 50% (2015), 20% (2017)  

Western Cape Water Supply System Theewaterskloof Reservoir: 
recovery July 22, 2017

July 9, 2018

↓ demand
1200 MLD (2015) to 
500 MLD (Jan 2018)

Expansion of GW: 
Hundreds of boreholes drilled
Dept. Water and Sanitation: 
encouraged households to drill
GW wells, Non-revenue water

Agriculture highly impacted: 
3000 jobs lost, 44% ↓ in yield. 
No compensation for farmers.

Livable Urban Waterways: 
GEOSS project
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4.0 Sao Paulo Drought GRACE Total Water Storage
Trends (2011 – 2015) in 
Parana Basin

2014 – 2017 drought linked to El Nino
Sao Paulo: SW dominant water source for ~ 20 million people
GW ↑ed drought resilience: 10,000 – 12,000 private wells drilled
GW use increased from 1% to 25% of total water supply during drought
60% of wells not regulated. Non revenue water

Parana Basin

GRACE TWS Anomaly 
(Apr. 11 – Apr. 2015)

Melo et al., HESS, 2016

Parana 
Basin

TWS depletion: 148 km3 total

18/20



Key Takeaways
1. GRACE data provide global picture of Total Water Storage anomalies but only for 2002 – 2025

2. Irrigation:

a) ↑ GW-fed irrigation in SSA, switching from native vegetation to cropland ↑ed recharge

b) Unmanaged aquifer recharge is important, inefficient SW irrigation recharges GW (Ag-
MAR, Flood-MAR) (Pakistan, NW India, NW US)

SW irrigation, salinization, waterlogging  → transition to GW irrigation → conjunctive use

c) GW and SW: a single resource, need to be managed together 

Conjunctive use of SW and GW in CA, AZ, -→ increase sustainable management

d) Managed Aquifer Recharge: highly successful in CA, AZ, ID, drought mitigation, irrigation 
infrastructure, suitable geology 

3. Urban water shortages:

▪ Cape Town and Sao Paulo, heavily reliant on surface water reservoirs

▪ Expanding GW use, decentralization, non-revenue water

20/20



Water Resources Podcast
http://wrp.beg.utexas.edu
Apple, Spotify etc

http://wrp.beg.utexas.edu/


Bridget.Scanlon@beg.utexas.edu

Sponsors:

Fisher Endowed Chair 
in Geological Sciences
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